Theoretical Studies on the Gyromagnetic Factors for Nd³+ in Scheelites-Type ABO₄ Compounds

Shao-Yi Wu^{a,b} and Hui-Ning Dong^{b,c}

 ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
 ^b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016,

P. R. China

College of Electronic Engineering, Chongqing University of Posts and Telecommunications,

Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com.

Z. Naturforsch. **59a**, 947 – 951 (2004); received September 24, 2004

The gyromagnetic factors for Nd^{3+} in scheelite-type ABO_4 compounds (A = Cd, Ca, Pb, Ba; B = Mo, W) are theoretically studied by the perturbation formulas of the anisotropic g factors g_{\parallel} and g_{\perp} for a $4f^3$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors due to the second-order perturbation terms and the admixtures of various energy levels are taken into account. The relevant crystal-field parameters are determined by the superposition model and the local geometrical relationship of the A^{2+} sites occupied by the impurity Nd^{3+} . The obtained g factors agree reasonably with the observed values. The discrepancies between theory and experiment are discussed.

Key words: EPR; Crystal-fields and Spin Hamiltonian; Nd³⁺; Scheelite-type ABO₄ Compounds (A= Cd, Ca, Pb, Ba; B=Mo, W).